262,144-word \times 16-bit CMOS UV Erasable and Programmable ROM

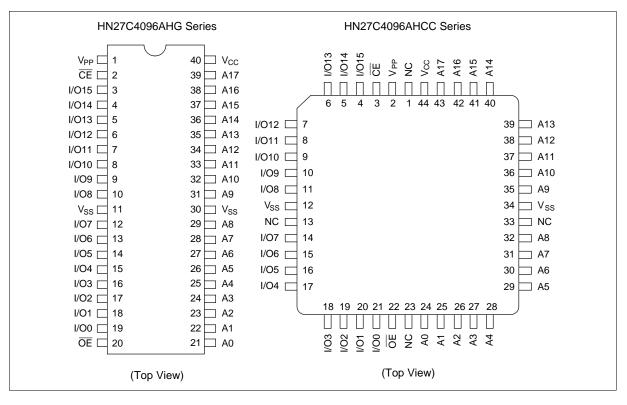
HITACHI

ADE-203-247A(Z) Rev. 1.0 Apr. 4, 1997

Description

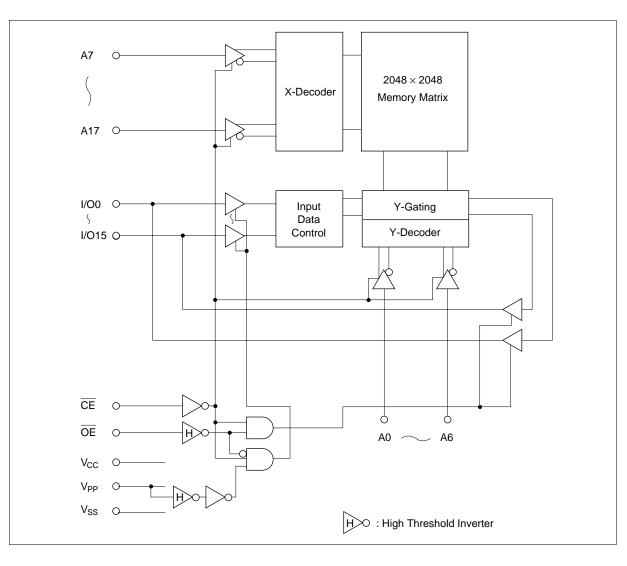
HN27C4096AHG/AHCC is a 4-Mbit ultraviolet erasable and electrically programmable ROM, featuring high speed access time and programming. Fabricated on advanced fine process and high speed circuitry technique, the HN27C4096AHG/AHCC makes high speed access time possible. Therefore, it is suitable for 16-bit microcomputer systems using high speed microcomputer such as the 80286/68020. The HN27C4096AHG/AHCC offers high speed programming using page programming mode. This device has the package variation of cerdip 40-pin and JLCC 44-pin.

Features


- High speed
 - Access time: 85 ns (max)
- Low power dissipation
 - Active mode: 35 mW/MHz (typ)
- Fast high reliability page programming and fast high-reliability programming
 - Programming voltage: +12.5 V D.C.
 - Programming time: 3.5 sec. (min) (Theoretical in page programming)
- Inputs and outputs TTL compatible during both read and program modes.
- Pin arrangement: 40-pin JEDEC standard, 44-pin JLCC JEDEC standard
- Device indentifier mode: Manufacturer code and device code
- Fully compatible with the HN27C4096HG/HCC Series.

Ordering Information

Туре No.	Access time	Package
HN27C4096AHG-85	85 ns	600-mil 40-pin Cerdip (DG-40A)
HN27C4906AHCC-85	85 ns	44-pin J-bend leaded chip carrier (CC-44)


Pin Arrangement

Pin Description

Pin name	Function
A0 – A17	Address
I/O0 – I/O15	Input/output
CE	Chip enable
ŌĒ	Output enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{ss}	Ground
NC	No connection

Block Diagram

Mode Selection

	Pi	in	CE	ŌE	A9	V _{PP}	\mathbf{V}_{cc}	I/O
	C	C-44	(3)	(22)	(35)	(2)	(44)	(4 – 11, 14 – 21)
Mode	D	G-40A	(2)	(20)	(31)	(1)	(40)	(3 – 10, 12 – 19)
Read			V_{IL}	V_{IL}	х	$V_{ss} - V_{cc}$	V_{cc}	Dout
Output disable			$V_{\rm IL}$	V_{IH}	×	$V_{ss} - V_{cc}$	V_{cc}	High-Z
Standby			V _{IH}	Х	×	$V_{ss} - V_{cc}$	V_{cc}	High-Z
Page prog.	Page program	n set	V _{IH}	$V_{\rm H}^{*2}$	×	V _{PP}	V_{cc}	High-Z
	Page data late	ch	V _{IL}	$V_{\rm H}^{\star 2}$	×	V _{PP}	V_{cc}	Din
	Page program	ı	V _{IL}	$V_{\rm IH}$	×	V _{PP}	V_{cc}	High-Z
	Page program	n verify	V _{IH}	V _{IL}	×	V _{PP}	V_{cc}	Dout
	Page program	n reset	V _{IH}	$V_{\rm IH}$	×	V _{cc}	V_{cc}	High-Z
Word prog.	Program		V _{IL}	$V_{\rm IH}$	×	V _{PP}	V_{cc}	Din
	Program verify	у	V _{IH}	V _{IL}	×	V _{PP}	V_{cc}	Dout
	Optional verify	/	V _{IL}	V _{IL}	×	V _{PP}	V_{cc}	Dout
	Program inhib	oit	V _{IH}	V_{IH}	×	V _{PP}	V_{cc}	High-Z
Identifier			V _{IL}	$V_{\rm IL}$	$V_{\rm H}^{*2}$	$V_{ss} - V_{cc}$	V_{cc}	Code

Notes: 1. ×: Don't care.

2. V_{H} : 12.0 V ± 0.5 V

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
All input and output voltages ^{*1}	Vin, Vout	-0.6 ^{*2} to +7.0	V
Voltage on pin A9 and \overline{OE}	V _{ID}	-0.6 ^{*2} to +13.0	V
V _{PP} voltage ^{*1}	V _{PP}	-0.6 to +13.5	V
V _{cc} voltage ^{*1}	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range ^{*3}	Tstg	-65 to +125	°C
Storage temperature under bias	Tbias	-20 to +80	°C

Notes: 1. Relative to V_{ss} .

2. Vin, Vout, V_{ID} min = -2.0 V for pulse width \leq 20 ns

3. Storage temperature range of device before programming.

Parameter Symbol Min Тур Max Unit **Test conditions** 12 Vin = 0 VInput capacitance Cin _ pF pF Vout = 0 VOutput capacitance Cout 20 ____ —

Capacitance (Ta = 25° C, f = 1 MHz)

Read Operation

DC Characteristics (V_{CC} =	$5 V \pm 10\%$,	$V_{PP} = V_{SS}$ to	$V_{\rm CC}, {\rm Ta} = 0 \text{ to } +70^{\circ}{\rm C})$
--	------------------	----------------------	---

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	I _{LI}	_		2	μΑ	Vin = 5.5 V
Output leakage current	I _{LO}	_		2	μΑ	Vout = 5.5 V/0.45 V
V _{PP} current	I _{PP1}	_	1	20	μΑ	V _{PP} = 5.5 V
Standby V_{cc} current	I _{SB}	_	_	30	mA	$\overline{CE} = V_{H}$
Operating V _{cc} current	I _{CC1}	_		30	mA	lout = 0 mA, f = 1 MHz
	I _{CC2}	_		140	mA	lout = 0 mA, f = 11.8 MHz
Input voltage	V _{IL}	-0.3*1	_	0.8	V	
	V _{IH}	2.2	—	V _{cc} + 1 ^{*2}	V	
Output voltage	V _{oL}	_	_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4			V	I _{OH} = -400 μA

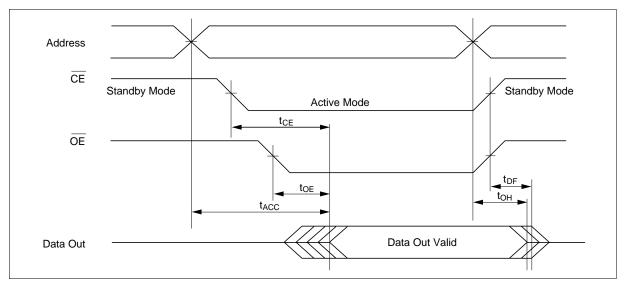
Notes: 1. V_{IL} min = -1.0 V for pulse width \leq 50 ns

 V_{IL} min = -2.0 V for pulse width \leq 20 ns

2. V_{IH} max = V_{CC} +1.5 V for pulse width \leq 20 ns

If $V_{\mbox{\tiny H}}$ is over the specified maximum value, read operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , Ta = 0 to $+70^{\circ}$ C)


Test Conditions

- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 10 ns
- Output load: 1 TTL gate +100 pF
- Reference levels for measuring timing: 1.5 V

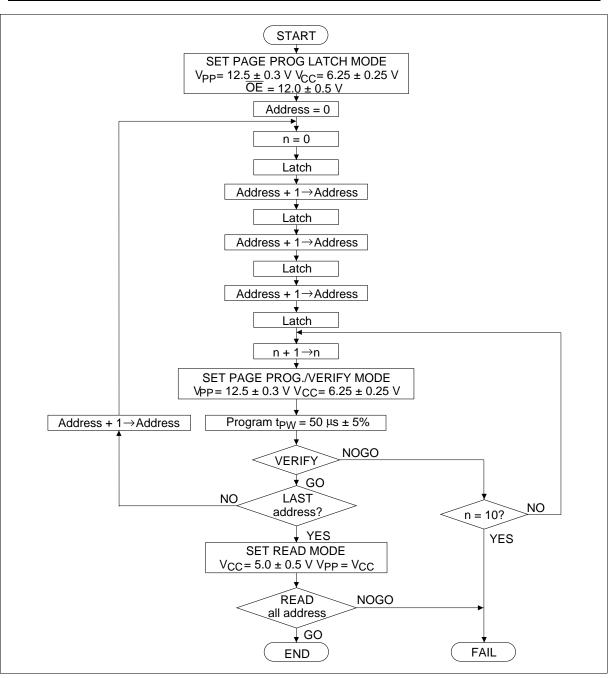
		HN27C40	96AHG/AHCC-85		
Parameter	Symbol	Min	Max	Unit	Test conditions
Address to output delay	t _{ACC}	_	85	ns	$\overline{CE} = \overline{OE} = V_{IL}$
CE to output delay	t _{ce}	—	85	ns	$\overline{OE} = V_{\mu}$
OE to output delay	t _{oe}	—	45	ns	$\overline{CE} = V_{IL}$
OE high to output float ^{*1}	t _{DF}	0	30	ns	$\overline{CE} = V_{IL}$
Address to output hold	t _{он}	5		ns	$\overline{CE} = \overline{OE} = V_{IL}$

Note: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Fast High-Reliability Page Programming

This device can be applied the high performance page programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.


Page Program Set

Apply 12 V to \overline{OE} pin after applying 12.5 V to V_{PP} to set a page program mode.

The device operates in a page program mode until reset.

Page Program Reset

Set V_{PP} to V_{CC} level or less to reset a page program mode.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 6.5 V/0.45 V
Output voltage during verify	V _{OL}	—	—	0.45	V	I _{OL} = 2.1 mA
	V _{OH}	2.4	_	_	V	$I_{OH} = -400 \ \mu A$
Operating V_{cc} current	I _{cc}	_	—	50	mA	
Input voltage	V _{IL}	-0.1*5	—	0.8	V	
	V _{IH}	2.2	—	V _{cc} + 0.5	⁶ V	
	V _H	11.5	12.0	12.5	V	
V _{PP} supply current	I _{PP}	_	_	70	mA	$\overline{CE} = V_{IL}$

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. $V_{\rm CC}$ must be applied before $V_{\scriptscriptstyle PP}$ and removed after $V_{\scriptscriptstyle PP}.$

2. V_{PP} must not exceed 13.5 V including overshoot.

3. An influence may be had upon device reliability if the device is installed or removed while V_{PP} = 12.5 V.

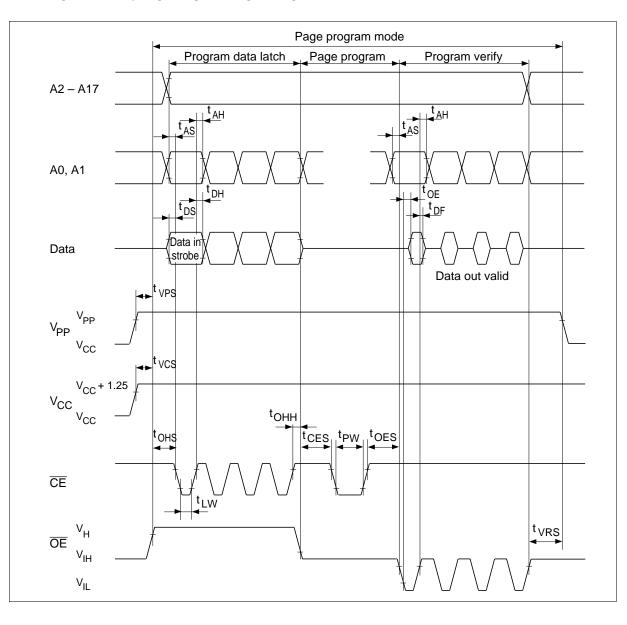
4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{μ} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

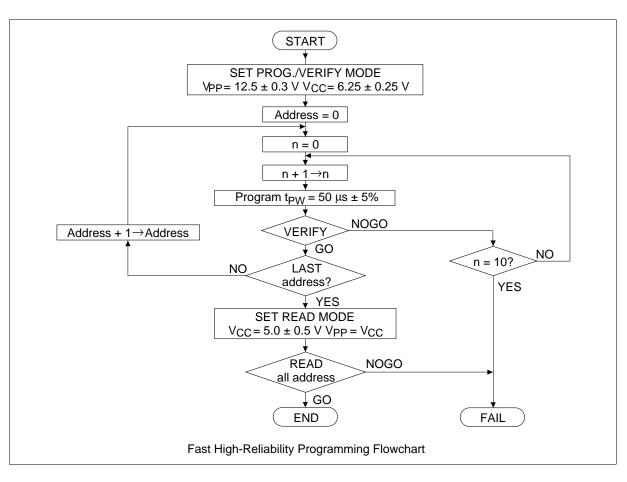
Test Conditions


- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timings: Inputs; 0.8 V, 2.0 V

Outputs; 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
OE high to output float delay	t _{DF} *1	0	_	130	ns	
V _{PP} setup time	t _{vPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
CE setup time	t _{CES}	2	_	_	μs	
Data valid from \overline{OE}	t _{oe}	0	_	150	ns	
CE pulse width during data latch	t _{LW}	1	_	_	μs	
$\overline{OE}=V_{H}$ setup time	t _{OHS}	2	_	_	μs	
$\overline{OE}=V_{H}$ hold time	t _{ohh}	2	_	_	μs	
V _{PP} hold time ^{*2}	t _{vrs}	1	_	_	μs	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.


2. Page program mode will be reset when V_{PP} is set to V_{cc} or less.

Fast High-Reliability Page Programming Timing Waveform

Fast High-Reliability Programming

This device can be applied the fast high-reliability programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	I _{LI}	_	_	2	μA	Vin = 6.5 V/0.45 V
V _{PP} supply current	I _{PP}	_	_	40	mA	$\overline{CE} = V_{IL}$
Operating V _{cc} current	I _{cc}		_	50	mA	
Input voltage	V _{IL}	-0.1*5	_	0.8	V	
	V _{IH}	2.2	_	V _{cc} + 0.5 ^{*6}	V	
Output voltage	V _{OL}		_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. V_{cc} must be applied before V_{PP} and removed after V_{PP} .

2. V_{PP} must not exceed 13.5 V including overshoot.

3. An influence may be had upon device reliability if the device is installed or removed while $V_{PP} = 12.5 \text{ V}$.

4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

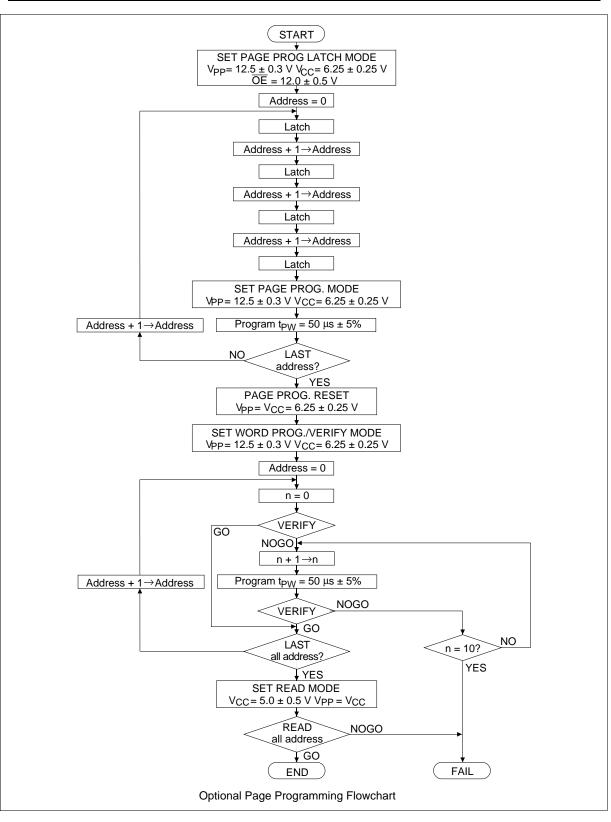
Test Conditions

- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timings: Inputs: 0.8 V, 2.0 V

Outputs: 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	—	—	μs	
Address hold time	t _{AH}	0	_	—	μs	
Data hold time	t _{DH}	2	_	—	μs	
OE to output float delay	t _{DF} *1	0	_	130	ns	
V _{PP} setup time	t _{VPS}	2	_	—	μs	
V _{cc} setup time	t _{vcs}	2	_	—	μs	
CE programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
Data valid from \overline{OE}	t _{oe}	0	_	150	ns	

Note: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.


Fast High-Reliability Programming Timing Waveform

Optional Page Programming

This device can be applied the optional page programming algorithm shown in the following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

This programming algorithm is the combination of page programming and word verify. It can avoid the increase of programming verify time when a programmer with slow machine cycle is used, and shorten the total programming time.

Regarding the timing specifications for page programming and word verify, please refer to the specifications for fast high-reliability page programming and fast high-reliability programming.

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Input leakage current	I _U	_	_	2	μΑ	Vin = 6.5 V/0.45 V
Output voltage during verify	V _{OL}	—	_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA
Operating V _{cc} current	I _{cc}	_	_	50	mA	
Input voltage	V _{IL}	-0.1 ^{*5}	_	0.8	V	
	V _{IH}	2.2	_	V _{cc} + 0.5 ^{*6}	° V	
	V _H	11.5	12.0	12.5	V	
V _{PP} supply current	I _{PP}			70	mA	$\overline{CE} = V_{IL}$

DC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Notes: 1. V_{cc} must be applied before V_{PP} and removed after V_{PP} .

2. V_{PP} must not exceed 13.5 V including overshoot.

3. An influence may be had upon device reliability if the device is installed or removed while V_{PP} = 12.5 V.

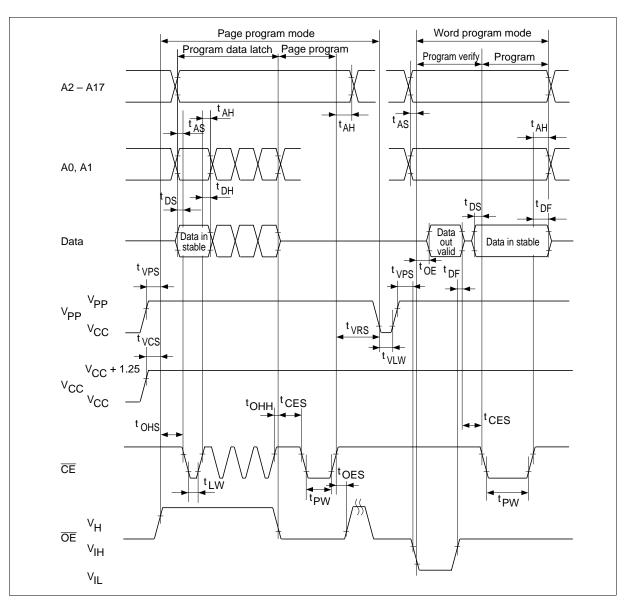
4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = low.

5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.

6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $Ta = 25^{\circ}C \pm 5^{\circ}C$)

Test Conditions


- Input pulse levels: 0.45 to 2.4 V
- Input rise and fall time: ≤ 20 ns
- Reference levels for measuring timing: Inputs: 0.8 V, 2.0 V,

Outputs: 0.8 V, 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Address setup time	t _{AS}	2	_	_	μs	
OE setup time	t _{oes}	2	—	_	μs	
Data setup time	t _{DS}	2	—	_	μs	
Address hold time	t _{AH}	0	—	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
OE high to output float delay	t _{DF} ^{*1}	0	_	130	ns	
V _{PP} setup time	t _{vPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE initial programming pulse width	t _{PW}	47.5	50.0	52.5	μs	
CE setup time	t _{CES}	2	_	_	μs	
Data valid from OE	t _{oe}	0	_	150	ns	
CE pulse width during data latch	t _{LW}	1	_	_	μs	
$\overline{OE} = V_H$ setup time	t _{OHS}	2	_	_	μs	
$\overline{OE} = V_{H}$ hold time	t _{ohh}	2	_	_	μs	
Page programming reset time*2	t _{vLW}	1	_	_	μs	
V _{PP} hold time ^{*2}	t _{vrs}	1	_	_	μs	

Notes: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

2. Page program mode will be reset when $V_{\mbox{\tiny PP}}$ is set to $V_{\mbox{\tiny CC}}$ or less.

Option Page Programming Timing Waveform

Erase

Erasure of HN27C4096AHG/AHCC is performed by exposure to ultraviolet light of 2537 Å and all the output data are changed to "1" after this erasure procedure. The minimum integrated dose (i.e. UV intensity \times exposure time) for erasure is 15 W · sec/cm².

Mode Description

Device Identifier Mode

The device identifier mode allows the reading out of binary codes that identify manufacturer and type of device, from outputs of EPROM. By this mode, the device will be automatically matched its own corresponding programming algorithm, using programming equipment.

HN27C4096AH Identifier Code

		A0	I/O8 – I/O15	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	
	CC-44	(24)	(11) – (4)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	•
Identifier	DG-40A	(21)	(10) – (3)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	Hex data
Manufacturer code		$V_{\rm IL}$	X	0	0	0	0	0	1	1	1	07
Device code		V_{IH}	X	1	0	1	0	0	0	1	0	A2
Notes: 1. $V_{00} = 5.0 \text{ V} + 10\%$												

Notes: 1. $V_{cc} = 5.0 V \pm 10\%$

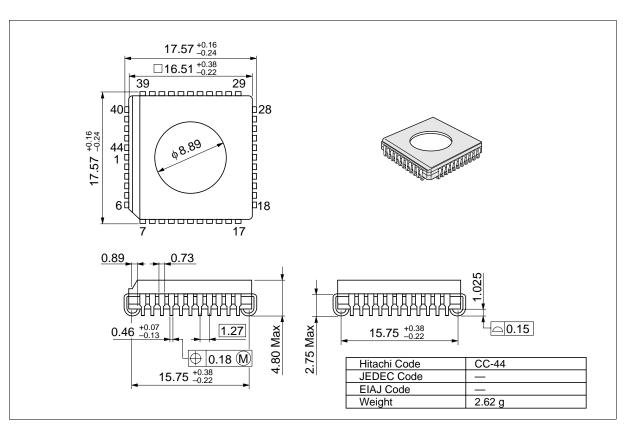
2. A9 = 12.0 V \pm 0.5 V

3. A1 – A8, A10 – A17, \overline{CE} , $\overline{OE} = V_{IL}$

4. ×: Don't care.

Unit: mm

Package Dimensions


HN27C4096AHG Series (DG-40A)

52.07 53.34 Max 21 40 15.51 Max 14.66 ¢8.89 20 1 1.32 2.54 Min 6.30 Max 15.24 2.54 Max nnnn 0.25-0.05 2.54 ± 0.25 0.48 ± 0.10 0 – 15° Hitachi Code DG-40A JEDEC Code EIAJ Code SC-615 Mod. Weight 12.57 g

Package Dimensions(cont)

HN27C4096AHCC Series (CC-44)

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

For further information write to:

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1835 U S A Tel: 415-589-8300 Fax: 415-583-4207 Hitachi Europe GmbH Electronic Components Group Continental Europe Dornacher Straße 3 D-85622 Feldkirchen München Tel: 089-9 91 80-0 Fax: 089-9 29 30 00 Hitachi Europe Ltd. Electronic Components Div. Northern Europe Headquarters Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA United Kingdom Tel: 0628-585000 Fax: 0628-778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 0104 Tel: 535-2100 Fax: 535-1533

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel: 27359218 Fax: 27306071

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	May. 6, 1994	Initial issue	A. Nara	T. Muto
1.0	Apr. 4, 1997	Change of format DC Characteristics $(V_{cc} = 5 V \pm 10 \%, V_{PP} = V_{SS} \text{ to } V_{CC}, Ta = 0 \text{ to } + 70^{\circ}\text{C})$ $I_{CC1} \text{ max } 35 \text{ mA to } 30 \text{ mA}$ AC Characteristics Deletion of t _{BAC} Change of Read timing waveform Deletion of Read timing waveform (Burst access mode) DC Characteristics $(V_{cc} = 6.25 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.3 V, Ta = 25 ^{\circ}\text{C} \pm 5^{\circ}\text{C})$ Change of note2		